Introduction aux Statistiques




Table 6. Probabilités associées aux valeurs aussi extrêmes que les valeurs de U observées du test de Mann-Whitney

La taille des deux échantillons ne peut être supérieure à 8.

n2 = 3n2 = 4
n1
U
1
2
3
n1
U
1
2
3
4
00,2500,1000,05000,2000,0670,0280,014
10,5000,2000,10010,4000,1330,0570,029
20,7500,4000,20020,6000,2670,1140,057
30,6000,35030,4000,2000,100
40,50040,6000,3140,171
50,65050,4290,243
60,5710,343
70,443
80,557

n2 = 5n2 = 6
n1
U
1
2
3
4
5
n1
U
1
2
3
4
5
6
00,1670,0470,0180,0080,00400,1430,0360,0120,0050,0020,001
10,3330,0950,0360,0160,00810,2860,0710,0240,0100,0040,002
20,5000,1900,0710,0320,01620,4280,1430,0480,0190,0090,004
30,6670,2860,1250,0560,02830,5710,2140,0830,0330,0150,008
40,4290,1960,0950,04840,3210,1310,0570,0260,013
50,5710,2860,1430,07550,4290,1900,0860,0410,021
60,3930,2060,11160,5710,2740,1290,0630,032
70,5000,2780,15570,3570,1760,0890,047
80,6070,3650,21080,4520,2380,1230,066
90,4520,27490,5480,3050,1650,090
100,5480,345100,3810,2140,120
110,421110,4570,2680,155
120,500120,5450,3310,197
130,579130,3960,242
140,4650,294
150,5350,350
160,409
170,469
180,531

n2 = 7
n1
U
1
2
3
4
5
6
7
00,1250,0280,0080,0030,0010,0010,000
10,2500,0560,0170,0060,0030,0010,001
20,3750,1110,0330,0120,0050,0020,001
30,5000,1670,0580,0210,0090,0040,002
40,6250,2500,0920,0360,0150,0070,003
50,3330,1330,0550,0240,0110,006
60,4440,1920,0820,0370,0170,009
70,5560,2580,1150,0530,0260,013
80,3330,1580,0740,0370,019
90,4170,2060,1010,0510,027
100,5000,2640,1340,0690,036
110,5830,3240,1720,0900,049
120,3940,2160,1170,064
130,4640,2650,1470,082
140,5380,3190,1830,104
150,3780,2230,130
160,4380,2670,159
170,5000,3140,191
180,5620,3650,228
190,4180,267
200,4730,310
210,5270,355
220,402
230,451
240,500
250,549

n2 = 8
n1
U
1
2
3
4
5
6
7
8
t
Normal
00,1110,0220,0060,0020,0010,0000,0000,0003,3080,001
10,2220,0440,0120,0040,0020,0010,0000,0003,2030,001
20,3330,0890,0240,0080,0030,0010,0010,0003,0980,001
30,4440,1330,0420,0140,0050,0020,0010,0012,9930,001
40,5560,2000,0670,0240,0090,0040,0020,0012,8880,002
50,2670,0970,0360,0150,0060,0030,0012,7830,003
60,3560,1390,0550,0230,0100,0050,0022,6780,004
70,4440,1880,0770,0330,0150,0070,0032,5730,005
80,5560,2480,1070,0470,0210,0100,0052,4680,007
90,3150,1410,0640,0300,0140,0072,3630,009
100,3870,1840,0850,0410,0200,0102,2580,012
110,4610,2300,1110,0540,0270,0142,1530,016
120,5390,2850,1420,0710,0360,0192,0480,020
130,3410,1770,0910,0470,0251,9430,026
140,4040,2170,1140,0600,0321,8380,033
150,4670,2620,1410,0760,0411,7330,041
160,5330,3110,1720,0950,0521,6280,052
170,3620,2070,1160,0651,5230,064
180,4160,2450,1400,0801,4180,078
190,4720,2860,1680,0971,3130,094
200,5280,3310,1980,1171,2080,113
210,3770,2320,1391,1020,135
220,4260,2680,1640,9980,159
230,4750,3060,19108930,185
240,5250,3470,2210,7880,215
250,3890,2530,6830,247
260,4330,870,5780,282
270,4780,3230,4730,318
280,5220,3600,3680,356
290,3990,2630,396
300,4390,1580,437
310,4800,0520,481
320,520

Modifiée d'après Siegel 1956.


Table 1 : Valeurs critiques de z ; Tab. 2 : valeurs critiques du Khi carré ; Tab. 3 : Valeurs critiques test binomial.Table 8 : Valeurs critiques de KD Kolmogorov-Smirnov pour 2 échantillons, n1 et n2 inférieur ou =40.
Table 4 : Valeurs critiques Kolmogorov-Smirnov pour un échantillon.Table 8b. Valeurs critiques de D Kolmogorov-Smirnov pour 2 échantillons, n1 et n2<40.
Table 5 : Valeurs critiques Wilcoxon.Table 9 : Valeurs critiques de D Kolmogorov-Smirnov pour 2 échantillons, n1 et n2 >40.
Table 6 : Valeurs de U Mann-Whitney, n1et n2. inférieur ou =8.Table 10 : Probabilités associées à des valeurs observées de Khi carré r du test de Friedman.
Table 7 : Valeurs critiques de U Man-Whitney, n1 supérieur ou =20 et n2 >8.Table 11 : Probabilités associées aux valeurs observées de H dans le test des rangs de Kruskall-Wallis.